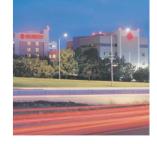


Intuitive Surgical Presentation to the Congressional Robotics Caucus -May 21, 2009



Intuitive Surgical - Overview

- Founded in 1995
 - Employs ~1100 people worldwide, ~1000 people in the US
 - Publicly-traded company, NASDAQ "ISRG"
- Intuitive's *da Vinci* systems used in 136,000 procedures performed in 2008, up 60% from 2007
 - Q109 procedures up approximately 60% from Q108
- 1,171 da Vinci® System base as of 3/31/09
 - 863 United States, 211 Europe, 97 Rest of World
- FDA Clearances Laparoscopic, Thoracoscopic, Prostatectomy, Cardiotomy, Revascularization, Urology, Gynecology, Pediatric
- Target Markets Urology, Gynecology, Cardiothoracic, General Surgery

SURGICAL

Medical-Surgical Robotics

Definition

 The use of computer-controlled mechanisms to improve therapeutic outcomes

Types of Medical-Surgical Robots

- Medical and Surgical Aids Surgery and patient care
- Radiation Therapy Robots Accurate therapy delivery
- Guidance and Positioning Robots Hands-on manipulator control
- Surgical Tele-robots Human-in-control

Value Proposition: Better therapeutic outcomes resulting from initial capital investment

- Better tissue targeting higher precision
- Less invasive procedures smaller access
- Reduced complications when compared to non-robotic procedures

The Medical-Surgical Robotics Landscape (1)

Medical and Surgical Robotic Aids

Rounding Robots - InTouch RP7 MIS Scope Holders

- Prosurgics EndoAssist

Radiation Therapy Robots

Radiation Control Robots - Accuray Cyberknife

The Medical-Surgical Robotics Landscape (2)

Guidance & Positioning Robots Image-Guided Robots - CUREXO Robodoc - Mazor SpineAssist Hand Guidance/Haptic Walls - MAKO Surgical

Surgical Tele-Robots Catheter Guidance Robots - Hansen Sensei - Stereotaxis Niobe Minimally Invasive Robots - Intuitive Surgical da Vinci

SURGICAL

Example: Intuitive's da Vinci® Si Tele-robot

Vision

 3D-HD view of the surgical field

Dexterity

 Greater range of motion than the human wrist

Precision

 Tremor reduction, motion scaling

Ergonomics

 Improved positioning & surgeon comfort

Drivers for Adoption of Robotic Surgery

Patient Value =

Efficacy Invasiveness^2

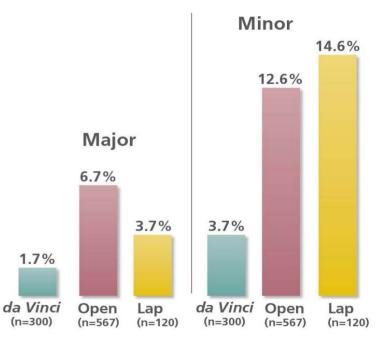
Surgeon Value = Patient Value + ease-of-use + dependability + shorter length-of-stay (LOS)

Hospital Value = Patient Value + Surgeon Value + economic benefits for the hospital

Economic Value = Improved outcomes + fewer complications + reduced LOS + fewer readmissions + faster return to normal activities

Representative Procedure - da Vinci® Prostatectomy

Reported Clinical Benefits of *da Vinci*[®] Procedures Versus Open Surgery


Greater Efficacy

- Improved cancer control¹
- Increased continence²
- Enhanced sexual potency³

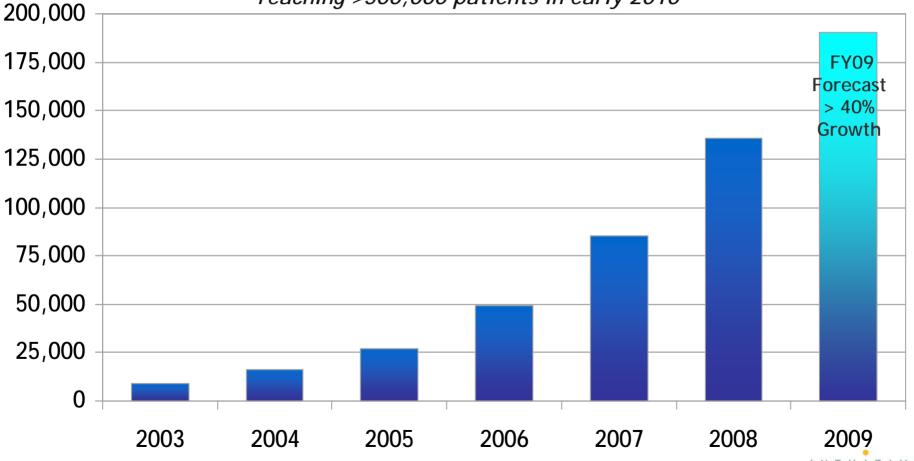
Reduced Invasiveness

- Reduced pain³
- Reduced blood loss⁴
- Reduced length of stay⁴

¹VR Patel. Urology Centers, Vestavia Hills, USA. Histopathologic Outcomes and Short Term PSA Data after Robotic Radical Prostatectomy. 500 Patients. Moderated Poster Session MP27, Wednesday, August 24, 2005. 23rd World Congress on Endourology and SWL 21st Basic Research Symposium August 23-26, 2005, Amsterdam, The Netherlands. J Endourol. 2005 Aug.; 19, Supplement 1: A135.

² T Ahlering. Continence: The UC Irvine Experience. Presented at UC Irivine's 2006 ART (Advanced Robotic Techniques) of Prostatectomy Symposium, January 5, 2006, Anaheim, California

³ Menon M, Kaul S, Bhandari A, Shrivastava A, Tewari A, Hemal A. Potency following robotic radical prostatectomy: a questionnaire based analysis of outcomes after conventional nerve sparing and prostatic fascia sparing techniques. J Urol. 2005 Dec;174(6):2291-6, discussion 2296. p. 2293 fig. 2.


^{3, 4} Menon M, Tewari A, Peabody JO, Shrivastava A, Kaul S, Bhandari A, Hemal AK. Vattikuti Institute prostatectomy, a technique of robotic radical prostatectomy for management of localized carcinoma of the prostate: experience of over 1100 cases. Urol Clin North Am. 2004 Nov;31(4):701-17. Review.

* Comparative prostatectomy results from: Bhandari A, J Urology 2000; Brown JA, Urologic Oncology, 2004; Guillonneau B, Jnl of Urology, 2002.

Annual Worldwide daVinci Procedures

*Cumulative total of ~300,000 da Vinci patients through 2008, reaching >500,000 patients in early 2010**

SURGICAL

* Forecasts based on Company estimates.

Procedures Performed with daVinci

Urology

Prostatectomy **Nephrectomy** Partial Nephrectomy **Pyeloplasty** Cystectomy **Donor Nephrectomy** Ureterolithotomy Pelvic Lymphadenectomy **Adrenalectomy Cystocele Repair Excision of Renal Cyst** Lymphadenectomy **Testicular Resection Renal Cyst Decortication Ureteral Transplant** Nephropexy Ureterectomy **Rectocele Repair** Varicocele Ureteroplasty **Ureteral Implantation** Vaso-vasostomy

Gynecology

Hysterectomy **Myomectomy** Sacral Colpopexy Pelvic Lymphadenectomy **Tubal Reanastomosis** Vaginal Prolapse Repair **Dermoid Cyst Endometrial Ablation Oophorocystectomy Oophorectomy Ovarian Cystectomy Ovarian Transposition** Salpingectomy Salpingo-Oophorectomy Colposuspension (Burch) **Tubal Ligation Tubalplasty**

Cardiothoracic

Mitral Valve Repair & Replacement **Single Vessel Beating Heart Bypass** Multi-Vessel Beating Heart Bypass Single Vessel Arrested Heart Bypass **Multi-Vessel Arrested Heart Bypass IMA Harvesting Coronary Anastomosis Atrial Septum Aneurysm Atrial Septal Defect Repair Tricuspid Valve Repair** Thrombectomy Thymectomy Esophagectomy Pericardial Window Lobectomy Pneumonectomy Pacemaker Lead Implantation Mediastinal Resection **Pulmonary Wedge Resection**

General

Gastric Bypass Nissen Fundoplication Heller Myotomy Gastrectomy **Colon Resection Thyroidectomy** Arteriovenous Fistula Toupet **Pancreatectomy** Adrenalectomy Hemi-Colectomy Sigmoidectomy **Splenectomy Pyloroplasty** Gastroplasty **Appendectomy** Intra-rectal Surgery **Bowel Resection** Lumbar Sympathectomy Liver Resection Cholecystectomy Hernia Repair

SURGICAL

Where Are We Now?

- Growing Market
 - 6 companies in the US market today
 - Many more working to bring new products to the market
- Substantive and Growing Clinical Literature
 - Over 1400 articles demonstrating equivalent or better outcomes, decreased trauma and decreased complication rates across many different procedures

Compelling Value Proposition

- Initial capital investments result in reduced hospital stays, decreased complication rates leading to decreases in re-admissions, and faster return to normal life for patients
- Primary savings from hospital operating costs, increased productivity, and avoided cost of capital for hospital facilities
- Within a few years, and with modest assumptions, net benefits in the US would total billions of dollars annually

Medical Robotics Presents a Substantial Opportunity

- Medical Tele-robots alone could be a \$4 Billion annual industry
- Government sponsored programs exist to create medical robots to compete in world markets in at least
 - Japan
 - Canada
 - Korea
 - Singapore
 - Great Britain
 - France
 - Germany

What Does the Future Hold?

Future Innovations in Surgical Robotics...

- Improved capability through fewer, smaller incisions
- Integrated imaging for diagnostics and therapeutics
- Advanced delivery of focal therapies

Leading to More Applications, Increased Benefits...

- Expanded set of robotic-minimally invasive procedures
- Greater access to higher quality care—for rural and smaller urban areas, and in military uses, e.g., bases and naval ships
- Improved healthcare outcomes overall
- Broader economic benefits

What Was Required for Early Entrants to Get Here?

Coordinated Public-Private Effort

 Collaborative projects with early government support laid the foundation for a new industry

Long-Range Vision for Government and Investors

 Intuitive's evolution (and that of other surgical robotics companies) depended on "patient" investment

Hospital Vision in Adopting Innovative Technologies

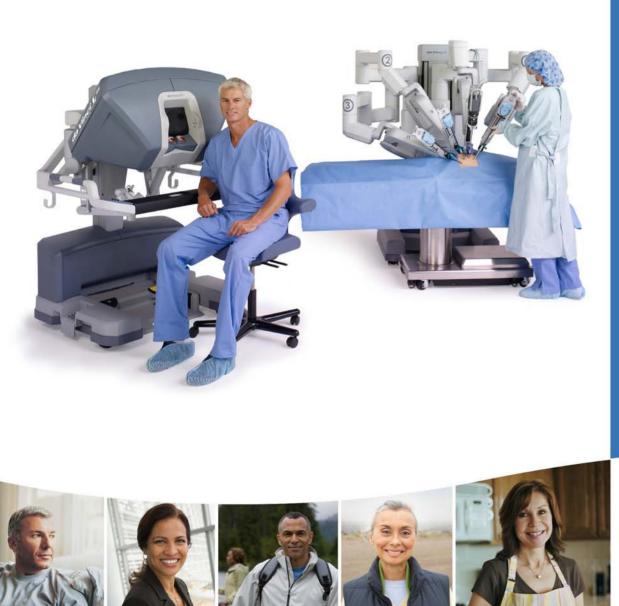
- Early adopters provided patients with new treatment options while ensuring safety, efficacy, and costeffectiveness
- Leaders "saw beyond" accounting practices that distort the impact of new technologies and fail to account for patient benefits

What Does the Industry Need Moving Forward?

Strong Commitments to Technology Leadership

 Delivering globally competitive medical robots will require on-going R&D and commercialization-focused investment

Cross-Agency Coordination and Support


 Surgical robotic technologies cut across a variety of disciplines and agency missions, making coordination of efforts essential

Thoughtful Approaches to Comparative Effectiveness Research and Healthcare Economics

 Robotics demonstrates increased clinical performance AND reduced end-to-end cost to treat—a cross-treatment-cycle view of costs and benefits is required

Thank You